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T. Döppner1, P. Neumayer1, F. Girard3, N. L. Kugland1,2, O. L. Landen1, C. Niemann1,2, and S. H. Glenzer1
1 Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551, USA

2 Physics Department, Box 951547, University of California Los Angeles, Los Angeles, California, 90095, USA
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We used Kr Kα (12.6 keV) and Ag Kα (22.1 keV) x-rays, produced by petawatt class laser pulses
interacting with a Kr gas jet and a silver foil, to measure the integrated crystal reflectivity of flat
Highly Oriented Pyrolytic Graphite (HOPG) up to fifth order. The reflectivity in fourth order is
lower by a factor of 50 when compared to first order diffraction. In second order the integrated
reflectivity decreases from 1.3 mrad at 12.6 keV to 0.5 mrad at 22.1 keV. The current study indicates
that HOPG crystals are suitable for measuring scattering signals from high energy x ray sources
(E ≥ 20 keV). These energies are required to penetrate through the high density plasma conditions
encountered in inertial confinement fusion capsule implosions on the National Ignition Facility.

PACS numbers: 52.25.Os, 52.38.Ph, 52.50.Jm

I. INTRODUCTION

Highly Oriented Pyrolytic Graphite (HOPG) crystals
are of particular interest for x-ray diagnostics of hot dense
plasmas. Their unique crystal plane structure enables
them to be highly efficient x-ray diffraction instruments.
These type of crystals, for example, have been success-
fully used in novel x-ray scattering experiments on warm
dense matter [1–3] for x-ray energies of 3 to 9 keV. On the
other hand, photon energies > 10 keV are required for the
probing of super-dense states of matter, as encountered
in inertial confinement fusion experiments [4]. The aim
of this work is to characterize the reflectivity of HOPG in
this energy range, i.e. at 12.6 keV and 22.1 keV. Since the
Bragg angle decreases when going to higher photon ener-
gies, it is necessary to use the crystals in higher diffrac-
tion orders. We have characterized the performance of
HOPG in up to fifth order to ascertain their effectiveness
for use in x-ray scattering experiments, especially when
the detection of weak signals requires high reflectivity
and good spectral resolution.

II. EXPERIMENTAL SETUP

We used the petawatt-class Titan laser facility at
the Lawrence Livermore National Laboratory [citation
needed] to produce Kα x-rays at 12.6 keV (Kr Kα) and
22.1 keV (Ag Kα). In these experpiments, the Titan
short-pulse beam delivered a pulse energy of up to 180 J
at 1054 nm in 0.7 ps. Focusing is achieved with an f/3 off-
axis parabola to a 1/e2 spot diameter of 15 µm, yielding
an intensity on target above 1020 W/cm2. To generate
Kr Kα x rays, the laser was focused onto a super sonic
Kr gas jet [5]. We aligned the laser focus close to the
gas jet nozzle and near the front edge of the gas jet in
order to maximize conversion efficiency [6]. The backing
pressure was kept at 90 bar to ensure the generation of
large clusters and thus efficient laser absorption [7]. The
neutral density of the gas jet was measured off line us-

ing a Lloyd’s mirror interferometer to be 8.7× 1019cm−3

±10% on axis at the nozzle exit. For generating Ag Kα
x rays the laser pulses were focused on a 10 µm silver
foil.

The x-ray conversion efficiencies were measured on
each shot using a single hit counting CCD [8, 9] to be
> 10−5 [5] and > 10−4 [8] into the full solid angle for Kr
Kα and Ag Kα, respectively. This technique uses a CCD
camera placed far enough away from the x-ray source
that a series of single photon events are recorded on the
detector. Single event histogram binning [9] of the image
yields an absolute number of photon events at discrete
energies. In our setup, the single hit CCD observed the
front side of the gas jet from distance of 5 m.

Laser pulse:
100-300J
0.7-40ps
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FIG. 1: Schematics of the experimental setup. For the Kr
Kα setup a focal length (distance from source to HOPG) of
230 mm was used. The inset shows a sample raw image for Ag
Kα. As a reference for absolute reflectivity measurements a
single hit CCD camera and an additional HOPG spectrometer
in fixed geometry (second order) were operated (not shown).
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FIG. 2: The lineshape at 22.1 keV is dominated by depth broadening which can be reproduced using Monte Carlo simulations.
This method can serve as an independent means to determine reflectivity changes between different HOPG orders. [will improve
statistics of fit function]

High resolution spectra of the Kα line emission were
recorded using two HOPG spectrometers. For diffraction
we used 25.4 mm × 25.4 mm × 2 mm ZYB grade HOPG
crystals (Advanced Ceramics) with a mosaic spread of
γ = 0.8 degree. The separation between the mosaic crys-
tal planes is d = 0.3354 nm. While one spectrometer
was operated in second order for all the shots to serve
as an additional source monitor, the primary instrument
was used to measure the integrated HOPG reflectivities
in various diffraction orders, see Fig. 1 for the schematics
of the setup. For detection we used imaging plates (Fuji
BAS-SR), which previously were absolutely calibrated at
5.9 keV and 22 keV [10, 11]. In between the imaging plate
sensitivity can be extrapolated by the absorption prop-
erties of the plates. In the gas jet setup the spectrometer
was filtered using 25 µm Mylar as blast shield, and 25 µm
Beryllium plus 12 µm Aluminum in front of the imaging
plates. Differential filtering using 25 µm Pb was used to
determine contribution from different diffraction orders.
For Ag Kα 25 µm and 400µm Aluminum were used as
blast shield and imaging plate filter, respectively.

III. RESULTS AND DISCUSSION

For mosaic focusing, the Bragg relationship must be
satisfied: nλ = 2d sin θB , where n is the diffraction or-

der, λ is the x-ray wavelength, and θB is the Bragg an-
gle. For Ag Kα θB is very small for low diffraction orders,
which makes it challenging to align, and, in particular for
first order, requires very large crystals to cover the neces-
sary bandwidth. At 12.6 keV we measured all diffraction
orders from one to five. In fifth diffraction order, the
signal was below the detection threshold. At 22.1 keV
the reflectivity was measured from second to fourth or-
der. Fig. 2 shows the Ag Kα line shapes in second to
fourth order. In general the measured line width is de-
termined by a variety of factors, i.e. the natural line
width, depth broadening, surface roughness, mosaicity
of the crystal, and the source size, which was discussed,
e.g., in Ref. [12]. At higher energies in general, and at
22.1 keV in particular the line width is dominated by
depth broadening which appears on the high energy side

Kr Kα n θB integrated Ag Kα n θB integrated
(12.6 keV) reflectivity (22.1 keV) reflectivity

[mrad] [mrad]
1 8.4 3.7 1 4.8
2 17.0 1.3 2 9.7 0.47
3 26.1 0.21 3 14.6 0.12
4 35.9 0.077 4 19.6 0.034
5 47.1 <0.02 5 24.8

TABLE I: Bragg angles and measured integrated reflectivities
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FIG. 3: Measured integral HOPG reflectivities at 12.6 keV
(Kr Kα) and 22.1 keV (Ag Kα) up to 4th order. For 12.6 keV
the setup in 5th order was tested, but the signal was below
the detection threshold.

of the main line, see Fig. 2. Nevertheless, the instrument
resolution is good enough to resolve Ag Kα1 and Ag Kα2.
Since the attenuation length of carbon at 22.1 keV is 15
mm, the depth broadening is limited by the thickness
of the crystal. Since the energy resolution increases to
higher diffraction order, the spectral line width decreases
accordingly. Thus decreasing the thickness of the crystal
is a possibility to enhance the energy resolution of the
instrument, though sacrificing reflectivity.

We performed Monte Carlo simulations to model the
shape of the measured Ag Kα lines. Within this simpi-
fied model the line shape depends on the mosaicity of the
crystal, the width of the crystal, the Bragg angle, the at-
tenuation length in graphite, as well as the reflectivity
R per unit length, which is adjusted to fit the synthetic

line shape to the measured profile. For the second or-
der signal in Fig. 2 the variation of the fit function with
respect to R is illustrated. The lowest diffraction order
is dominated by single reflections yielding an exponen-
tial decay in the high energy side. For higher diffraction
orders the probability of multiple reflections within the
crystal increases, significantly changing the shape of the
measured line. The reflectivities R(n) extracted in this
way from the simulation show the same dependence on
the diffraction order n as the measured integrated reflec-
tivity. Hence at high x ray energies where the line width
is dominated by depth broadening the measurement of
the line shape is a viable way of determining crystal re-
flectivities.

The measured integrated reflectivities are shown in
Fig. 3. In general, the signal strength descreases to-
wards higher diffraction orders by two orders of mag-
nitude. Even though the absolute values differ the slope
is very similar at 12.6 keV and 22.1 keV. The highest
reflectivity is observed at 12.6 keV in first order with
3.7 mrad. This value agrees with previous measurements
at ∼ 5 keV and ∼ 8 keV [12]. At 22.1 keV the reflectivity
is measured to be lower by a factor of 2 to 3 compared to
12.6 keV. Nevertheless, the integrated reflectivity is still
up to about a factor of 5 times higher than for commonly
used less mosaic crystals such as LiF or PET [13] making
them suited for the detection of weak signals, as required
in x-ray Thomson/Compton scattering experiments to
probe dense and warm states of matter.
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